I.1 概要:バイオインフォマティクスにおけるデータベースの重要性
I.1.1 データベースエコシステムの理解
バイオインフォマティクス研究では、多様なデータベースが相互に連携し、包括的な生物学的情報基盤を形成しています。
I.1.2 データベース選択の戦略的アプローチ
研究目的に応じた効果的なデータベース選択フレームワーク:
Step 1: 研究クエスチョンの分類
def classify_research_question(question_type, data_scope, analysis_depth):
"""
研究クエスチョンに基づくデータベース推奨システム
Args:
question_type: "functional", "structural", "evolutionary", "clinical"
data_scope: "single_gene", "pathway", "genome_wide", "multi_omics"
analysis_depth: "descriptive", "comparative", "predictive", "causal"
Returns:
dict: 推奨データベースとアクセス戦略
"""
recommendations = {
"functional": {
"single_gene": {
"descriptive": ["UniProt", "GO", "InterPro"],
"comparative": ["UniProt", "GO", "OMA"],
"predictive": ["STRING", "GO", "KEGG"],
"causal": ["GO", "KEGG", "Reactome"]
},
"pathway": {
"descriptive": ["KEGG", "Reactome", "BioCyc"],
"comparative": ["KEGG", "STRING", "GO"],
"predictive": ["KEGG", "STRING", "MetaCyc"],
"causal": ["Reactome", "KEGG", "SIGNOR"]
}
},
"structural": {
"single_gene": {
"descriptive": ["PDB", "UniProt", "Pfam"],
"comparative": ["PDB", "CATH", "SCOP"],
"predictive": ["AlphaFold", "ModBase", "I-TASSER"],
"causal": ["PDB", "CASTp", "ConCavity"]
}
},
"clinical": {
"single_gene": {
"descriptive": ["ClinVar", "OMIM", "PharmGKB"],
"comparative": ["ClinVar", "COSMIC", "ExAC"],
"predictive": ["ClinVar", "PharmGKB", "DGIdb"],
"causal": ["ClinVar", "OMIM", "DisGeNET"]
},
"genome_wide": {
"descriptive": ["GWAS Catalog", "UK Biobank", "GTEx"],
"comparative": ["GWAS Catalog", "PhenoScanner", "Open Targets"],
"predictive": ["PRS Catalog", "GWAS Catalog", "UK Biobank"],
"causal": ["Open Targets", "DisGeNET", "STRING"]
}
}
}
try:
return {
"primary_databases": recommendations[question_type][data_scope][analysis_depth],
"access_strategy": generate_access_strategy(question_type, data_scope),
"integration_approach": suggest_integration_methods(data_scope, analysis_depth)
}
except KeyError:
return {"error": "Invalid combination of parameters"}
def generate_access_strategy(question_type, data_scope):
"""データアクセス戦略の生成"""
if data_scope in ["genome_wide", "multi_omics"]:
return {
"method": "bulk_download",
"tools": ["FTP", "API", "rsync"],
"preprocessing": "required",
"storage": "local_database_recommended"
}
else:
return {
"method": "query_based",
"tools": ["REST_API", "web_interface"],
"preprocessing": "minimal",
"storage": "cache_sufficient"
}
def suggest_integration_methods(data_scope, analysis_depth):
"""データ統合手法の提案"""
integration_matrix = {
("single_gene", "descriptive"): ["manual_curation", "simple_joins"],
("single_gene", "comparative"): ["orthology_mapping", "sequence_alignment"],
("pathway", "predictive"): ["network_analysis", "enrichment_analysis"],
("genome_wide", "causal"): ["mendelian_randomization", "colocalization"],
("multi_omics", "predictive"): ["multi_modal_ML", "network_integration"]
}
return integration_matrix.get((data_scope, analysis_depth), ["custom_integration"])
# 使用例
recommendation = classify_research_question("clinical", "single_gene", "predictive")
print(f"推奨データベース: {recommendation['primary_databases']}")
print(f"アクセス戦略: {recommendation['access_strategy']['method']}")